<< Back to Staff and Faculty Listing

Roozbeh Sadeghian, Ph.D.
Assistant Professor of Data Analytics
Email

Phone Number:

717-901-5100 x1645

Education:

Ph.D. in Electrical Engineering, State University of New York at Binghamton, Binghamton, NY, USA.
M.Sc. In Electrical Enginieering, Shiraz University, Shiraz, Iran.
B.Sc. In Electrical Engineering, Isfahan University of Technology, Isfaha, Isfahan, Iran.

Biography:

Upon graduating with a degree in electrical engineering (control field), Dr. Sadeghian worked for seven years in several industries as a Senior Industrial Automation Engineer. He decided to continue his education in the signal processing field which gave him the motivation for obtaining a Ph.D. During his Ph.D. research, he began familiarizing himself with Machine learning with a focus in diagnosing human health disorders.

Dr. Sadeghian worked on speech features as the baseline to diagnose the delay in speech in children and Alzheimer's disease in elderly people. To address the issues properly, he has worked with several tools such as DNN and RNN networks and has published several papers that proved his hypothesis of using speech recognition in diagnosing health disorders in early stages.

Teaching and Research Interests:

Dr. Sadeghian's teaching interests include graduate courses such as Analytics, Data Visualization, Signal Processing, Automatic speech recognition, Pattern recognition, Machine learning, Power systems, Convex optimization,and Modern Control.
His undergraduate courses include any undergraduate course related to signal processing (signals and systems, digital signal processing) and applied mathematics (linear algebra, probability theory).

Dr. Sadeghian's research is founded at the nexus of science and engineering of clinical diagnosis and early notice of assessments and also analytics and data science. Specific topics include:
– Analytics, Big data and data science, Data visualization
– Modeling, detection and tracking of paralinguistic information, such as health state, and traits from human speech signal
– Machine learning applications in speech processing
– Acoustic and Language Modeling and analyzing the speech signals with applications to recognition and clinical assessments of speech
– Developing new and improving the current speech features to improve ASR accuracy.

Courses Taught at HU:

ANLY 500
ANLY 530
Analytics I
Analytical Methods II
Machine Learning I
Principles and Applications